The formation, occurrence, and function of β-apocarotenoids: β-carotene metabolites that may modulate nuclear receptor signaling.
نویسندگان
چکیده
β-Carotene is the major dietary source of provitamin A. Central cleavage of β-carotene yields 2 molecules of retinal followed by further oxidation to retinoic acid. Eccentric cleavage of β-carotene occurs at double bonds other than the central double bond, and the products of these reactions are β-apocarotenals and β-apocarotenones. We reviewed recent developments in 3 areas: 1): the enzymatic production of β-apocarotenoids in higher animals; 2) the occurrence of β-apocarotenoids in foods and animal tissues; and 3) the biological activity of β-apocarotenoids, particularly on retinoid receptors. HPLC-mass spectrometry techniques were developed to quantify these compounds in mouse serum and tissues and in foods. β-Apo-10'- and -12'-carotenals were detected in mouse serum and liver. β-Apo-8'-, β-apo-10'-, β-apo-12'-, and β-apo-14'-carotenals and β-apo-13-carotenone were detected in orange-fleshed melons. Transactivation assays were performed to see whether apocarotenoids activate or antagonize retinoid X receptor (RXR) α. Reporter gene constructs and retinoid receptor (RXRα) were transfected into cells, which were used to perform quantitative assays for the activation of this ligand-dependent transcription factor. None of the β-apocarotenoids significantly activated RXRα. However, β-apo-13-carotenone antagonized the 9-cis-retinoic acid activation of RXRα. Competitive radioligand binding assays showed that this antagonist competes directly with the agonist for binding to purified receptor, a finding confirmed by molecular modeling studies. These findings suggest that a possible biological function of β-apocarotenoids is their ability to interfere with nuclear receptor signaling. Recent work showed that β-apo-13-carotenone is also a high-affinity antagonist of all 3 retinoic acid receptors (RARα, RARβ, and RARγ).
منابع مشابه
Carotenoid metabolism in mammals, including man: formation, occurrence, and function of apocarotenoids.
Vitamin A was recognized as an essential nutrient 100 years ago. In the 1930s, it became clear that dietary β-carotene was cleaved at its central double to yield vitamin A (retinal or β-apo-15'-carotenal). Thus a great deal of research has focused on the central cleavage of provitamin A carotenoids to form vitamin A (retinoids). The mechanisms of formation and the physiological role(s) of nonce...
متن کاملNaturally occurring eccentric cleavage products of provitamin A β-carotene function as antagonists of retinoic acid receptors.
β-Carotene is the major dietary source of provitamin A. Central cleavage of β-carotene catalyzed by β-carotene oxygenase 1 yields two molecules of retinaldehyde. Subsequent oxidation produces all-trans-retinoic acid (ATRA), which functions as a ligand for a family of nuclear transcription factors, the retinoic acid receptors (RARs). Eccentric cleavage of β-carotene at non-central double bonds i...
متن کاملDirected Blocking of TGF-β Receptor I Binding Site Using Tailored Peptide Segments to Inhibit its Signaling Pathway
Background: TGF-β isoforms play crucial roles in diverse cellular processes. Therefore, targeting and inhibiting TGF-β signaling pathway provides a potential therapeutic opportunity. TGF-β isoforms bind and bring the receptors (TβRII and TβRI) together to form a signaling complex in an ordered manner. Objectives: Herein, an antagonistic variant of TGF-β (AnTβ)...
متن کاملBeta-catenin Forms Protein Aggregation at High Concentrations in HEK293TCells
Background: The canonical Wnt signal transduction (or the Wnt/β-catenin pathway) plays a crucial role in the development of animals and in carcinogenesis. Beta-catenin is the central component of this signaling pathway. The activation of Wnt/β-catenin signaling results in the cytoplasmic and nuclear accumulation of β-catenin. In the nucleus, β-catenin interacts with the TCF/LEF transcription fa...
متن کاملDown-regulation of miR-135b in colon adenocarcinoma induced by a TGF-β receptor I kinase inhibitor (SD-208)
Objective(s):Transforming growth factor-β(TGF-β) is involved in colorectal cancer (CRC). The SD-208 acts as an anti-cancer agent in different malignancies via TGF-β signaling. This work aims to show the effect of manipulation of TGF-β signaling on some miRNAs implicated in CRC. Materials and Methods: We investigated the effects of SD-208 on SW-48, a colon adenocarcinoma cell line. The cell li...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The American journal of clinical nutrition
دوره 96 5 شماره
صفحات -
تاریخ انتشار 2012